Понятия со словосочетанием «математическая индукция»
Математическая индукция — метод математического доказательства, который используется, чтобы доказать истинность некоторого утверждения для всех натуральных чисел. Для этого сначала проверяется истинность утверждения с номером 1 — база (базис) индукции, а затем доказывается, что если верно утверждение с номером n, то верно и следующее утверждение с номером n + 1 — шаг индукции, или индукционный переход.
Связанные понятия
Трансценде́нтное число́ (от лат. transcendere — переходить, превосходить) — это вещественное или комплексное число, не являющееся алгебраическим — иными словами, число, которое не может быть корнем многочлена с целочисленными коэффициентами (не равного тождественно нулю). Можно также заменить в определении многочлены с целочисленными коэффициентами на многочлены с рациональными коэффициентами, поскольку корни у них одни и те же.
Аксио́мы Пеа́но — одна из систем аксиом для натуральных чисел, введённая в XIX веке итальянским математиком Джузеппе Пеано.
Арифметика Пресбургера — это теория первого порядка, описывающая натуральные числа со сложением, но в отличие от арифметики Пеано, исключающая высказывания относительно умножения. Названа в честь польского математика Мойжеша Пресбургера, который в 1929 году предложил соответствующую систему аксиом в логике первого порядка, а также показал её разрешимость.
Теоре́ма Лебе́га о мажори́руемой сходи́мости в функциональном анализе, теории вероятностей и смежных дисциплинах — это теорема, утверждающая, что если сходящаяся почти всюду последовательность измеримых функций может быть ограничена по модулю сверху интегрируемой функцией, то все члены последовательности, а также предельная функция тоже интегрируемы. Более того, интеграл последовательности сходится к интегралу её предела.
В математике, симметрической алгеброй S(V) (также обозначается Sym(V)) векторного пространства V над полем K называется свободная коммутативная ассоциативная K-алгебра с единицей, содержащая V.
Подробнее: Симметрическая алгебра
Коалгебра — математическая структура, которая двойственна (в смысле обращения стрелок) к ассоциативной алгебре с единицей. Аксиомы унитарной ассоциативной алгебры могут быть сформулированы в терминах коммутативных диаграмм. Аксиомы коалгебры получаются путём обращения стрелок. Каждая коалгебра c дуальностью (векторного пространства) порождает алгебру, но не наоборот. В конечномерном случае дуальность есть в обоих направлениях. Коалгебры встречаются в разных случаях (например, в универсальных обёртывающих...
Конъюнкти́вная норма́льная фо́рма (КНФ) в булевой логике — нормальная форма, в которой булева формула имеет вид конъюнкции дизъюнкций литералов. Конъюнктивная нормальная форма удобна для автоматического доказательства теорем. Любая булева формула может быть приведена к КНФ. Для этого можно использовать: закон двойного отрицания, закон де Моргана, дистрибутивность.
Элементарные функции — функции, которые можно получить с помощью конечного числа арифметических действий и композиций из следующих основных элементарных функций...
Важнейшими с точки зрения приложений характеристических функций к выводу асимптотических формул теории вероятностей являются две предельные теоремы — прямая и обратная. Эти теоремы устанавливают, что соответствие, существующее между функциями распределения и характеристическими функциями, не только взаимно однозначно, но и непрерывно.
Подробнее: Прямая и обратная предельная теорема
Ультрапредел — конструкция, позволяющая определить предел для широкого класса математических объектов.
Алгебра Клини — в теоретической информатике, специальная алгебраическая структура, введённая американским математиком Стивеном Клини, являющаяся обобщением алгебры регулярных выражений.
Интеграл Лебе́га — это обобщение интеграла Римана на более широкий класс функций.
А́лгебра Ли — объект общей алгебры. Естественно появляется при изучении инфинитезимальных свойств групп Ли.
Лемма (греч. λημμα — предположение) — доказанное утверждение, полезное не само по себе, а для доказательства других утверждений.
Гипотезы Вейля — математические гипотезы о локальных дзета-функциях проективных многообразий над конечными полями.
Вполне упорядоченное множество — линейно упорядоченное множество M такое, что в любом его непустом подмножестве есть минимальный элемент, другими словами, это фундированное множество с линейным порядком.
Сходи́мость по ме́ре (по вероя́тности) в функциональном анализе, теории вероятностей и смежных дисциплинах — это вид сходимости измеримых функций (случайных величин), заданных на пространстве с мерой (вероятностном пространстве).
Конти́нуум-гипо́теза (проблема континуума, первая проблема Гильберта) — выдвинутое в 1877 году Георгом Кантором предположение о том, что любое бесконечное подмножество континуума является либо счётным, либо континуальным. Другими словами, гипотеза предполагает, что мощность континуума — наименьшая, превосходящая мощность счётного множества, и «промежуточных» мощностей между счетным множеством и континуумом нет, в частности, это предположение означает, что для любого бесконечного множества действительных...
Теорема Хольмгрена — теорема о единственности решения задачи Коши для дифференциального уравнения с частными производными в случае аналитичности коэффициентов дифференциального оператора.
Факторизация целых чисел для больших чисел является задачей большой сложности. Не существует никакого известного способа, чтобы решить эту задачу быстро. Её сложность лежит в основе некоторых алгоритмов шифрования с открытым ключом, таких как RSA.
Функция Геделя — функция, применяющаяся в теории алгоритмов для облегчения нумерации множеств натуральных чисел.
Теорема Пуанкаре о векторном поле (также известна как теорема Пуанкаре — Хопфа и теорема об индексе) — классическая теорема дифференциальной топологии и теории динамических систем;
Теорема Витта — теорема о свойствах конечномерных ортогональных пространств над полями произвольного вида. Она утверждает, что любая изометрия между двумя подпространствами конечномерного ортогонального векторного пространства может быть продолжена на все пространство.
В теории категорий есте́ственное преобразова́ние предоставляет способ перевести один функтор в другой, сохраняя внутреннюю структуру (например, композиции морфизмов). Поэтому естественное преобразование можно понимать как «морфизм функторов». Эта интуиция может быть строго формализована в определении категории функторов. Естественные преобразования — наиболее базовое определение в теории категорий наряду с функторами, поэтому оно появляется в большинстве её приложений.
Подробнее: Естественное преобразование
Составно́е число́ (в XIX веке также сложное число) — натуральное число, бо́льшее 1, не являющееся простым. Каждое составное число является произведением двух или более натуральных чисел, бо́льших 1.
Топологическая комбинаторика — это молодая область математики, возникшая в последней четверти 20-го века, которая занимается следующими вопросами...
Евкли́дова геоме́трия (или элементарная геометрия) — геометрическая теория, основанная на системе аксиом, впервые изложенной в «Началах» Евклида (III век до н. э.).
Абелево многообразие — это проективное алгебраическое многообразие, являющееся алгебраической группой (это значит, что закон композиции задаётся регулярной функцией).
Дизъюнкти́вная норма́льная фо́рма (ДНФ) в булевой логике — нормальная форма, в которой булева формула имеет вид дизъюнкции конъюнкций литералов. Любая булева формула может быть приведена к ДНФ. Для этого можно использовать закон двойного отрицания, закон де Моргана, закон дистрибутивности. Дизъюнктивная нормальная форма удобна для автоматического доказательства теорем.
Теорема о монотонной сходимости (теорема Беппо́ Ле́ви) — это теорема из теории интегрирования Лебега, имеющая фундаментальное значение для функционального анализа и теории вероятностей, где служит инструментом для доказательства многих положений. Даёт одно из условий при которых можно переходить к пределу под знаком интеграла Лебега, теорема позволяет доказать существование суммируемого предела у некоторых ограниченных функциональных последовательностей.
В классической механике ско́бки Пуассо́на (также возможно ско́бка Пуассо́на и скобки Ли) — это оператор, играющий центральную роль в определении эволюции во времени динамической системы. Эта операция названа в честь С.-Д. Пуассона.
Подробнее: Скобка Пуассона
Теория чисел, или высшая арифметика, — раздел математики, первоначально изучавший свойства целых чисел. В современной теории чисел рассматриваются и другие типы чисел — например, алгебраические и трансцендентные, а также функции различного происхождения, которые связаны с арифметикой целых чисел и их обобщений.
Гиперко́мпле́ксные числа — различные расширения вещественных чисел, такие как комплексные числа, кватернионы и пр.
Подробнее: Гиперкомплексное число
Теорема Мура о факторпространстве — классическое утверждение двумерной топологии, даёт достаточное условие на то, что факторпространство сферы гомеоморфно двумерной сфере.
Теорема Пайерлса — теорема квантовой статистической физики. Сформулирована и доказана Рудольфом Пайерлсом в 1930 году.
Точный функтор — функтор, который переводит точные последовательности в точные. Точные функторы удобны для вычислений в гомологической алгебре, поскольку их можно сразу применять к резольвентам объектов. Бо́льшая часть гомологической алгебры была построена для того, чтобы сделать возможной работу с функторами, которые не являются точными, но их отличие от точных поддаётся контролю.
Критерий Лиувилля — Мордухай-Болтовского — критерий существования решения в обобщенных квадратурах линейного однородного обыкновенного дифференциального уравнения произвольного порядка.
Теорема Цермело — теорема теории множеств, утверждающая, что на всяком множестве можно ввести такое отношение порядка, что множество будет вполне упорядоченным.
Биекция — это отображение, которое является одновременно и сюръективным, и инъективным. При биективном отображении каждому элементу одного множества соответствует ровно один элемент другого множества, при этом определено обратное отображение, которое обладает тем же свойством. Поэтому биективное отображение называют ещё взаимно однозначным отображением (соответствием), одно-однозначным отображением.